Search results

Search for "spring constant" in Full Text gives 170 result(s) in Beilstein Journal of Nanotechnology.

Design, fabrication, and characterization of kinetic-inductive force sensors for scanning probe applications

  • August K. Roos,
  • Ermes Scarano,
  • Elisabet K. Arvidsson,
  • Erik Holmgren and
  • David B. Haviland

Beilstein J. Nanotechnol. 2024, 15, 242–255, doi:10.3762/bjnano.15.23

Graphical Abstract
  • comes the spring constant k, which should match the maximum tip–surface force gradient. For a given k, the mechanical resonant frequency is set by meff, A larger mechanical resonant frequency gives a larger integration bandwidth for a given mechanical quality factor Qm = ωm/γm. However, increasing ωm
  • fabricating a wafer of sensor chips. We design the cantilever’s plane-view dimensions to achieve ωm/2π in the range of 0.5–10 MHz, corresponding to mechanical spring constant values k in the range of 2–160 N/m for typical device parameters. The wide frequency range allows us to fabricate devices working in
  • ωm, quality factor Qm, and spring constant k of the cantilever. These trade-offs affect the transduction efficiency and force sensitivity. Although a large single-photon coupling rate g0 is desirable, we prioritize a cavity that we can pump to large intra-cavity photon numbers while maintaining
PDF
Album
Full Research Paper
Published 15 Feb 2024

Quantitative wear evaluation of tips based on sharp structures

  • Ke Xu and
  • Houwen Leng

Beilstein J. Nanotechnol. 2024, 15, 230–241, doi:10.3762/bjnano.15.22

Graphical Abstract
  • , making it ideal for reverse imaging of the AFM probe tip to detect tip wear. AFM images were acquired using a Bruker Icon AFM system in tapping mode. The AFM probe used for AFM imaging was a Bruker FESPA-V2 probe. The cantilever was 225 µm long, 35 µm wide, and had a spring constant of 2.8 N/m. The
PDF
Album
Full Research Paper
Published 14 Feb 2024

CdSe/ZnS quantum dots as a booster in the active layer of distributed ternary organic photovoltaics

  • Gabriela Lewińska,
  • Piotr Jeleń,
  • Zofia Kucia,
  • Maciej Sitarz,
  • Łukasz Walczak,
  • Bartłomiej Szafraniak,
  • Jerzy Sanetra and
  • Konstanty W. Marszalek

Beilstein J. Nanotechnol. 2024, 15, 144–156, doi:10.3762/bjnano.15.14

Graphical Abstract
  • carried out for three incidence angles (65°, 70°, and 75°). A Bruker atomic force microscope (AFM) MULTIMODE 8 was used in the measurements in the ScanAsyst in Air mode, using silicon nitride probes (with a nominal tip radius of 2 nm and a spring constant equal to 0.4 N/m). The substrate was
PDF
Album
Supp Info
Full Research Paper
Published 02 Feb 2024

Enhanced feedback performance in off-resonance AFM modes through pulse train sampling

  • Mustafa Kangül,
  • Navid Asmari,
  • Santiago H. Andany,
  • Marcos Penedo and
  • Georg E. Fantner

Beilstein J. Nanotechnol. 2024, 15, 134–143, doi:10.3762/bjnano.15.13

Graphical Abstract
  • setpoint value, as shown in Figure 2C-ii. The slope of the force–distance curve depends on the effective spring constant between the tip and the sample. To mitigate this issue, we select a small time window around the maximum deflection point, where the tip–sample relative velocity is the smallest because
PDF
Album
Supp Info
Full Research Paper
Published 01 Feb 2024

Carbon nanotube-cellulose ink for rapid solvent identification

  • Tiago Amarante,
  • Thiago H. R. Cunha,
  • Claudio Laudares,
  • Ana P. M. Barboza,
  • Ana Carolina dos Santos,
  • Cíntia L. Pereira,
  • Vinicius Ornelas,
  • Bernardo R. A. Neves,
  • André S. Ferlauto and
  • Rodrigo G. Lacerda

Beilstein J. Nanotechnol. 2023, 14, 535–543, doi:10.3762/bjnano.14.44

Graphical Abstract
  • contact mode. AC160TS silicon cantilevers from Olympus with a typical spring constant of k ≈ 46 N/m, a nominal radius of curvature of r ≈ 7 nm, and a resonant frequency of ω0 ≈ 300 kHz were employed. Heat flow and weight changes of selected solvents were determined by thermogravimetric analysis (TGA
PDF
Album
Supp Info
Full Research Paper
Published 26 Apr 2023

High–low Kelvin probe force spectroscopy for measuring the interface state density

  • Ryo Izumi,
  • Masato Miyazaki,
  • Yan Jun Li and
  • Yasuhiro Sugawara

Beilstein J. Nanotechnol. 2023, 14, 175–189, doi:10.3762/bjnano.14.18

Graphical Abstract
  • advantages, namely high sensitivity to the electrostatic force gradient, high detection sensitivity using a cantilever with a weak spring constant at the first resonance, ease of implementation in adding FM-AFM, and no need to enhance the bandwidth of the cantilever deflection sensor. FM-KPFM is used to
  • vibration cos 2πf0t, f0 ± fm components of the electrostatic force Fele,L(f0 ± fm) appear: When the electrostatic force is detected by the FM method, the electrostatic force Fele,L(f0 ± fm) is demodulated into the fm component of the frequency shift ΔfL(fm), which is expressed as where k is the spring
  • constant of the cantilever. This equation indicates that the slope of the dependence of the fm component of the frequency shift ΔfL(fm) on the DC bias voltage Vdc (ΔfL(fm)–Vdc curve) is proportional to the capacitance inside the semiconductor at a low-frequency AC bias (CD + Cit). High KPFS Next, we
PDF
Album
Full Research Paper
Published 31 Jan 2023

Characterisation of a micrometer-scale active plasmonic element by means of complementary computational and experimental methods

  • Ciarán Barron,
  • Giulia Di Fazio,
  • Samuel Kenny,
  • Silas O’Toole,
  • Robin O’Reilly and
  • Dominic Zerulla

Beilstein J. Nanotechnol. 2023, 14, 110–122, doi:10.3762/bjnano.14.12

Graphical Abstract
  • setup used to perform such measurements. An Adama NM-RC probe (spring constant: 290.3 N/m, nominal resonance frequency: 814 kHz) has been used in contact mode to scan the topography of an electrically modulated sample with a loading force of 1.9 μN. This particular probe is intended for use in
  • nanomechanical operations such as lithography and machining. The high spring constant of this cantilever has the advantage of minimising the unwanted deflection of the cantilever resulting from electrostatic interaction of the potential on the surface and the probe. The tip is constructed from wear-resistant
PDF
Album
Full Research Paper
Published 16 Jan 2023

Utilizing the surface potential of a solid electrolyte region as the potential reference in Kelvin probe force microscopy

  • Nobuyuki Ishida

Beilstein J. Nanotechnol. 2022, 13, 1558–1563, doi:10.3762/bjnano.13.129

Graphical Abstract
  • spring constant of 3 N/m. The CPD was detected using the sideband KPFM mode [18][19][4]. The amplitude and frequency of the modulation voltage were 1.5 V and 3.2 kHz, respectively. The modulation voltage and DC voltage were applied to the tip to minimize the electrostatic force between the tip and sample
PDF
Album
Full Research Paper
Published 19 Dec 2022

Studies of probe tip materials by atomic force microscopy: a review

  • Ke Xu and
  • Yuzhe Liu

Beilstein J. Nanotechnol. 2022, 13, 1256–1267, doi:10.3762/bjnano.13.104

Graphical Abstract
  • percussive mode AFM imaging, and the growth of PdNWCNT does not significantly decrease the cantilever spring constant and cantilever mass factor. PdNWCNTs showed better performance than standard CNTs in some SPM applications. For example, because it is difficult to form good ohmic contact CNTs, the existence
  • , especially large colloidal probes, where the intrinsic static deflection sensitivity and spring coefficient need to be verified. Chighizola et al. [58] proposed an accurate method for calibrating large CPs. This method is applied to calibrate the intrinsic spring constant kTL of a topless cantilever beam by
PDF
Album
Review
Published 03 Nov 2022

Comparing the performance of single and multifrequency Kelvin probe force microscopy techniques in air and water

  • Jason I. Kilpatrick,
  • Emrullah Kargin and
  • Brian J. Rodriguez

Beilstein J. Nanotechnol. 2022, 13, 922–943, doi:10.3762/bjnano.13.82

Graphical Abstract
  • in the response of the lever proportional to the quality factor of that mode, Qn, where n is the mode number [36][55]. KPFM techniques can be applied off resonance (ω ≠ ωn), where ∝ 1/kn, where kn is the spring constant of the n-th eigenmode. More generally, KPFM techniques are applied at, or close
  • constant, T is the temperature, Nd is the detector noise, and ωn, kn, and Qn are, respectively, the resonance frequency, spring constant, and quality factor of the n-th eigenmode (n = 1, 2). The corresponding gain at a given frequency is then defined as We note that more complex expressions for the
PDF
Full Research Paper
Published 12 Sep 2022

Gelatin nanoparticles with tunable mechanical properties: effect of crosslinking time and loading

  • Agnes-Valencia Weiss,
  • Daniel Schorr,
  • Julia K. Metz,
  • Metin Yildirim,
  • Saeed Ahmad Khan and
  • Marc Schneider

Beilstein J. Nanotechnol. 2022, 13, 778–787, doi:10.3762/bjnano.13.68

Graphical Abstract
  • same day. AFM measurements were carried out with a JPK NanoWizard® 3 AFM (JPK Instruments, Berlin, Germany) using the MLCT cantilever tip D (Bruker France Nano Surfaces, Wissembourg, France) with a nominal resonance frequency of 15 kHz and a spring constant of 0.03 N/m. Before each measurement, the
  • actual sensitivity and the spring constant of the used cantilever were calibrated on a cleaned silica wafer by the thermal noise method by Hutter et al. [27] using a correction factor of 0.251. The data was acquired using the quantitative imaging mode (QI™) with image sizes of 5 × 5 µm and a resolution
  • single nanoparticles. For the values of Young’s moduli, the respective curves were treated as follows: The determined spring constant and sensitivity must be applied to calibrate the cantilever deflection. To correct the vertical offset, a baseline subtraction is applied, and the contact point is
PDF
Album
Full Research Paper
Published 16 Aug 2022

Direct measurement of surface photovoltage by AC bias Kelvin probe force microscopy

  • Masato Miyazaki,
  • Yasuhiro Sugawara and
  • Yan Jun Li

Beilstein J. Nanotechnol. 2022, 13, 712–720, doi:10.3762/bjnano.13.63

Graphical Abstract
  • was arranged in front of a photodetector of the OBD system to suppress the influence of the UV light on the deflection sensor. We used a commercial Ir-coated Si cantilever (NANOSENSORS, SD-T7L100) with a resonant frequency f0 of 913 kHz, a spring constant k of 650 N/m, and a quality factor Q of 7748
PDF
Album
Full Research Paper
Published 25 Jul 2022

Quantitative dynamic force microscopy with inclined tip oscillation

  • Philipp Rahe,
  • Daniel Heile,
  • Reinhard Olbrich and
  • Michael Reichling

Beilstein J. Nanotechnol. 2022, 13, 610–619, doi:10.3762/bjnano.13.53

Graphical Abstract
  • for technical reasons. Consequences of this inclined AFM cantilever mount have been identified before, in particular for atomic force microscopy performed in static (“contact”) mode where an effective spring constant [6][7][8] has been introduced and a torque [9][10] as well as load [11] correction
PDF
Album
Full Research Paper
Published 06 Jul 2022

Effects of substrate stiffness on the viscoelasticity and migration of prostate cancer cells examined by atomic force microscopy

  • Xiaoqiong Tang,
  • Yan Zhang,
  • Jiangbing Mao,
  • Yuhua Wang,
  • Zhenghong Zhang,
  • Zhengchao Wang and
  • Hongqin Yang

Beilstein J. Nanotechnol. 2022, 13, 560–569, doi:10.3762/bjnano.13.47

Graphical Abstract
  • Germany) for 2 h to prevent damage to the cells. Before the experiment, the thermal noise method was used to adjust the cantilever spring constant, and then the experiment was carried out in contact mode. The AFM probe (MLCT probe, Bruker, USA) slightly contacted the cell surface and a constant force was
  • maintained. An indentation area of 3 μm × 3 μm was selected at the nuclear region where 36 force curves were recorded for each cell in force spectroscopy mode. The indentation force of 1 nN, spring constant values of 0.01 N·m−1, Z length of 5 μm, and an approach speed of approximately 2 μm·s−1 were employed
PDF
Album
Supp Info
Full Research Paper
Published 28 Jun 2022

Nanoscale friction and wear of a polymer coated with graphene

  • Robin Vacher and
  • Astrid S. de Wijn

Beilstein J. Nanotechnol. 2022, 13, 63–73, doi:10.3762/bjnano.13.4

Graphical Abstract
  • of the chains in the lower quarter of the substrate are tethered to their original positions using springs with spring constant 1 eV/Å2. Graphene deposition After the solidification of the semicrystalline substrate a layer of graphene is deposited on top. We use two different graphene sheets in our
  • surface and indents it. After 1 ns, the tip has reached a stable depth. The tip is then attached to the support with a harmonic spring that acts along the sliding direction. The spring constant is equal to 30 N/m. The support is moving at a constant velocity in the x-direction of 2 m/s. We run the sliding
PDF
Album
Full Research Paper
Published 14 Jan 2022

Effect of lubricants on the rotational transmission between solid-state gears

  • Huang-Hsiang Lin,
  • Jonathan Heinze,
  • Alexander Croy,
  • Rafael Gutiérrez and
  • Gianaurelio Cuniberti

Beilstein J. Nanotechnol. 2022, 13, 54–62, doi:10.3762/bjnano.13.3

Graphical Abstract
  • no passivation and complete passivation. Therefore, in our case, it can be viewed as the easiest case to have bond formation. Also, to constrain the rotational axle, we connect a stiff spring with spring constant k = 1600 N/m (1000 eV/Å2) to the center-of-mass of either gear. To fix the temperature
PDF
Album
Supp Info
Full Research Paper
Published 05 Jan 2022

Topographic signatures and manipulations of Fe atoms, CO molecules and NaCl islands on superconducting Pb(111)

  • Carl Drechsel,
  • Philipp D’Astolfo,
  • Jung-Ching Liu,
  • Thilo Glatzel,
  • Rémy Pawlak and
  • Ernst Meyer

Beilstein J. Nanotechnol. 2022, 13, 1–9, doi:10.3762/bjnano.13.1

Graphical Abstract
  • [47] operated in the frequency-modulation mode (resonance frequency f0 ≈ 25 kHz, spring constant k ≈ 1800 N/m, quality factor Q ≈ 14000, and oscillation amplitude A ≈ 0.5 Å). The tip mounted to the qPlus sensor consists of a 25 μm-thick PtIr wire, shortened and sharpened with a focused ion beam. A
PDF
Album
Letter
Published 03 Jan 2022

Alteration of nanomechanical properties of pancreatic cancer cells through anticancer drug treatment revealed by atomic force microscopy

  • Xiaoteng Liang,
  • Shuai Liu,
  • Xiuchao Wang,
  • Dan Xia and
  • Qiang Li

Beilstein J. Nanotechnol. 2021, 12, 1372–1379, doi:10.3762/bjnano.12.101

Graphical Abstract
  • (50 µL) and the AFM tip (10 µL). The characterization was carried out using a Cypher ES AFM (Asylum Research, USA) at room temperature with soft cantilevers (TR400PSA-L) with a resonance frequency of approx. 11 kHz and a spring constant of approx. 0.02 N/m. The schematic diagram of the cells
PDF
Album
Supp Info
Full Research Paper
Published 14 Dec 2021

Cantilever signature of tip detachment during contact resonance AFM

  • Devin Kalafut,
  • Ryan Wagner,
  • Maria Jose Cadena,
  • Anil Bajaj and
  • Arvind Raman

Beilstein J. Nanotechnol. 2021, 12, 1286–1296, doi:10.3762/bjnano.12.96

Graphical Abstract
  • position ratio as: and the relative spring constant ratio as: where ksample and kcantilever are the equivalent linear spring constants of the sample at equilibrium and the cantilever, respectively, we assemble the characteristic equation as [39]: where This relationship has a unique physically relevant
  • solution valid for both the first and second contact modes, thus determining kratio and γ for the system. We define the cantilever spring constant as [1]: and the first free vibrating mode stiffness as [40]: allowing us to solve for kcantilever and the flexural rigidity EI. Combining these with previous
PDF
Album
Supp Info
Full Research Paper
Published 24 Nov 2021

Two dynamic modes to streamline challenging atomic force microscopy measurements

  • Alexei G. Temiryazev,
  • Andrey V. Krayev and
  • Marina P. Temiryazeva

Beilstein J. Nanotechnol. 2021, 12, 1226–1236, doi:10.3762/bjnano.12.90

Graphical Abstract
  • amplitude of the probe oscillations sharply drops to zero [24]. This phenomenon is usually caused by a combination of small oscillation amplitude, inappropriately low spring constant of the probe (and thus too low energy stored in the vibration), strong attractive forces caused by some surface layers (water
PDF
Album
Supp Info
Full Research Paper
Published 15 Nov 2021

Mapping the local dielectric constant of a biological nanostructured system

  • Wescley Walison Valeriano,
  • Rodrigo Ribeiro Andrade,
  • Juan Pablo Vasco,
  • Angelo Malachias,
  • Bernardo Ruegger Almeida Neves,
  • Paulo Sergio Soares Guimarães and
  • Wagner Nunes Rodrigues

Beilstein J. Nanotechnol. 2021, 12, 139–150, doi:10.3762/bjnano.12.11

Graphical Abstract
  • /dz is the tip–sample force gradient and K is the spring constant of the cantilever. The tip–sample-substrate system constitutes a capacitor with the sample (wing) as part of the relative permittivity region, so the force between tip and substrate can be modeled as where C is the system capacitance
PDF
Album
Full Research Paper
Published 28 Jan 2021

Bulk chemical composition contrast from attractive forces in AFM force spectroscopy

  • Dorothee Silbernagl,
  • Media Ghasem Zadeh Khorasani,
  • Natalia Cano Murillo,
  • Anna Maria Elert and
  • Heinz Sturm

Beilstein J. Nanotechnol. 2021, 12, 58–71, doi:10.3762/bjnano.12.5

Graphical Abstract
  • , spring constant of the cantilever kc, and cantilever deflection δ. In this way, the forces acting on the tip are measured by recording the deflection δ of the cantilever. While decreasing the distance between the tip and the sample, the cantilever deflects toward the sample (attractive forces Fattr, −δ
  • absolute value of AHam when kc is very small and JTC occurs early, before an additional deflection occurs. In the present work, cantilevers with high spring constant values are used and the effective radius Reff is unknown. Therefore, the absolute value for AHam cannot be estimated. However, the maximum
  • properties of the sample can be represented by an elastic spring with a spring constant k, although this is certainly a simplification. With a cantilever deflection δ, a cantilever spring constant kc, the sample spring constant k, and a tip–sample distance Z, the elastic response of the whole setup can be
PDF
Album
Supp Info
Full Research Paper
Published 18 Jan 2021

Atomic layer deposited films of Al2O3 on fluorine-doped tin oxide electrodes: stability and barrier properties

  • Hana Krýsová,
  • Michael Neumann-Spallart,
  • Hana Tarábková,
  • Pavel Janda,
  • Ladislav Kavan and
  • Josef Krýsa

Beilstein J. Nanotechnol. 2021, 12, 24–34, doi:10.3762/bjnano.12.2

Graphical Abstract
  • cantilever (TESPA-V2) with a resonant frequency fres of approx. 300 kHz, a spring constant k of 0.42 N·m−1, and a nominal tip radius of 8 nm (Bruker, USA) was employed. The Gwyddion software (v. 2.53) was utilized for processing AFM image data. Results and Discussion AFM was used to compare the morphology of
PDF
Album
Supp Info
Full Research Paper
Published 05 Jan 2021

Application of contact-resonance AFM methods to polymer samples

  • Sebastian Friedrich and
  • Brunero Cappella

Beilstein J. Nanotechnol. 2020, 11, 1714–1727, doi:10.3762/bjnano.11.154

Graphical Abstract
  • b, density ρ, and Young’s modulus Et. The tip mass, being typically much smaller than the cantilever mass, is neglected. The tip is located at a distance L1 < L from the clamped end of the cantilever. The flexural spring constant of the cantilever is [2]. The tip–sample interaction can be modeled
  • method does not offer any advantages. Like measurements through force–distance curves, such a quantitative analysis presupposes the knowledge of the tip radius and, of course, of the spring constant of the cantilever. Yet, a further parameter is needed with CR methods, namely the relative tip position γ
  • curves on an uncompliant substrate, such as a silicon wafer. The spring constant could then be determined from the thermal noise spectrum [42]. Tip radii have been obtained through scanning a TGT1 test grating (NT-MDT Spectrum Instruments, Moscow, Russia) consisting of an array of sharp tips. The
PDF
Album
Supp Info
Full Research Paper
Published 12 Nov 2020

Design of V-shaped cantilevers for enhanced multifrequency AFM measurements

  • Mehrnoosh Damircheli and
  • Babak Eslami

Beilstein J. Nanotechnol. 2020, 11, 1525–1541, doi:10.3762/bjnano.11.135

Graphical Abstract
  • microscopy (AFM) in soft matter characterization has expanded, the use of different types of cantilevers for these studies have also increased. One of the most common types of cantilevers used in soft matter imaging is V-shaped cantilevers due to their low normal spring constant. These types of cantilevers
  • are also suitable for nanomanipulation due to their high lateral spring constants. The combination of low normal spring constant and high lateral spring constants makes V-shaped cantilevers promising candidates for imaging soft matter. Although these cantilevers are widely used in the field, there are
  • , lower frequency ratios dictate lower spring constant ratios, which can be advantageous due to lower forces applied to the surface by the tip given a sufficiently high first eigenmode frequency. Finally, two commercially available V-shaped cantilevers are theoretically and experimentally benchmarked with
PDF
Album
Supp Info
Full Research Paper
Published 06 Oct 2020
Other Beilstein-Institut Open Science Activities